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Abstract

Surface tension is a topic that many textbooks neglect. This leaves many olympians confused
when given problems about surface tension. This handout attempts to give an introduction to
the theory of surface tension as well as giving several examples and problems for the reader to
attempt.
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1 Introduction

1.1 The Basics

Surface tension is the tendency of a liquid to shrink into the most minimal surface possible.
This phenomenon causes many possibilities: water striders are insects which can walk over water
surfaces; water droplets can sit on top of surfaces without seeping through; and through a process
called capillary action, plants can move water upwards through its layers. The first question that
may come to mind is, why does surface tension want to minimize the shape of water? The reason
comes down to the molecular level. If the surface of water is increased, the number of particles on
the surface increases, and the molecular energy as well. Increasing energy takes work, so this is
why the fluid wants to minimize the energy involved. The incremental energy1 dG of the surface is
proportional to its area dA, so dG = γdA. Here, γ refers to the surface tension (Newtons/meter)
of the liquid.

At the surface of a liquid interface, the number of molecular bonds decreases as shown in the
image below [4]. This missing energy is essentially positive free energy at the surface, i.e. surface
tension. Furthermore, consider the molecules between two interfaces. If there is a molecule A
both inside and outside of an interface, there is energy corresponding to that from chemical bonds.
Likewise, if there is a molecule B both inside and outside, there is also energy corresponding to
that. Accordingly, if there is a molecule A on the outside and molecule B on the inside, there
is another energy contribution. In the end, interfaces are the result of different materials on the
outside and inside. So, surface tension can be thought of as the energy cost of putting A on the
outside and B on the inside. As a result, surface tension always depends on what A and B are, so
we must denote it as γAB. For example, between vapour and liquid, we can denote γV L or between
the solid surface and the liquid, we can denote γSL.

Figure 1: A diagram of the molecular forces of molecules within the liquid. Well within it, molecular
bonds act in all directions. However, at the surface, only bonds below the molecule act on it leading
to an energy disparity.

We can estimate how large surface tension is. Suppose there is a liquid with density ρ and molar
mass M . By ideal gas law, the number of molecules per unit volume is ρNA/M where NA is
Avogadro’s number. Therefore, at the surface, we can expect the number to go as the 2/3 power.
The energy contribution per each molecule is hence, γ/(ρNA/M)2/3. For water, we know from

1This is Gibb’s free energy.
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before that the surface tension at 20◦ is 72.8 mN/m, which means that putting in realistic numbers
gives 0.043 eV per molecule. Compared to the latent heat per molecule, which is approximately 0.45
eV, the effects of surface tension are on the power of 10−1. This quick exercise lets us understand
the effects of surface tension more. Surface tension is still relatively small, if not, negligible on
larger scales. Another interesting property is that γ changes at different temperatures because
the molecular bond energy changes; the relationship is linear with respect to temperature. This
was found by the Hungarian physicist Lorand Eötvös and is now known as the Eötvös rule.2 But,
at room temperature some common values for surface temperature are 72.8 mN/m (water), 28.88
mN/m (Benzene), 64.00 mN/m (Glycerol), and 425.41 mN/m (Mercury).
Theorem 1. For a fluid surface S with surface tension γ, the infinitesimal force dF acting on a
small length ds on the surface follows

dF = γds× n̂. (1)

Proof. Suppose we stretch an interface of original length L by a length ds. The change in area is
dA = Lds. Therefore, the work done is dW = γLds. Therefore, the change in force orthogonal to
its direction is dF = γds. The original force that holds the interface is F = γL.

Now, we need to make sure that the surface forces are tangential. Consider a thin interface of
the liquid which stretches from point A to B as shown in . The atmosphere from the air exerts a
pressure on the interface while the pressure from the bubble exerts it opposite as well.

Figure 2: A figure which determines the equilibrium of a vapour liquid interface.

Let FA be the force exerted by the liquid at point A and let FB be the force exerted by the liquid
at point B. We claim that the orthogonal components FA⊥ and FB⊥ must necessarily be zero. Let
us assume that AB is small meaning that we can neglect the weight of the interface and assume
that pressure is uniform. The net torque from point B will be

τB = FA⊥ ·AB,

and the net torque from point A will be

τA = FB⊥ ·AB.

For a rigid body in equilibrium, the torque at any point must be zero. Hence, τA, τB = 0 which
means FA⊥ and FB⊥ must be zero and that FA and FB act along the interface.

2See the appendix for more information.

Page 3



Surface Tension PhysOly Ashmit Dutta

This is similar to how the tension in a rope works. Suppose we cut a part of the interface which
has a length L. Then the two ends will pull at each other with a force per unit length γ similar to
the tension T in a rope. This fact can be used for many olympiad problems.

Example 1 (KöMaL Magazine) In a wire frame with a diameter of ` shown in the figure,
a soap membrane with a surface tension of γ was created. The points P and Q are connected
by an unstretched hair of length `, young modulus E, and cross section A.

`

P

Q

How much does the hair stretch if the membrane is pierced by a hot needle? You can take the
approximation sinα ≈ α− α3

6 for small angles α. Assume the weight of the hair is negligible.

Solution. The hot needle serves a purpose of disturbing the membrane forcing it to reach a new
equilibrium. The membrane contracts slightly forcing the hair to bend; as the hair is elastic, it
stretches.

`+ ∆`

P

Q

R

α
α

Fγ

Fγ

As the hair bends only slightly, the radius of curvature R of the hair will be large and the angle
will be small. The net force of surface tension will be

Ftot = 2Fγ sin α2 ≈ 2 · γRα · α2 = γRα2 ≈ γ `

2α.

The initial length of the rod is ` = 2R sinα and the new length of the rod is ` + ∆` = R(2α).
Hence, ∆` = 2R(α− sinα). As the rod changes in length, the elastic force is

F = EA∆`
`

= 2REA(α− sinα)
2R sinα = EA(α− sinα)

sinα .
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We can approximate the trigonometric expression, using the fact that α3 � α as

α− sinα
sinα ≈

α− α+ α3

6
α− α3

6
≈ α3

6α− α3 ≈
α2

6 .

Hence, we can balance forces as

EAα2

6 = γ
`

2α =⇒ α = 3

√
3`γ
EA

.

From approximations, ∆` can be written as `α2

6 meaning

∆` = `

6

(3`γ
EA

)2/3
.

�
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1.2 Wetting

When a droplet is placed on a piece of paper it spreads throughout it. On the contrary, when
placed on a plastic material, it is stationary. The reason this happens is due to wetting which
describes the ability of a liquid to maintain contact with a solid surface. Wetting is the result of
adhesive forces which attempt to spread the liquid across the surface and cohesive forces which
cause the liquid to ball up. The effect of wetting depends on the contact angle of the fluid, which is
the angle the fluid makes at the contact point with the solid. When a droplet is perfectly wetted,
it is like a flat pool of water, while on the contrary, if it is non-wetted, it will be exactly a sphere.

Contact Angle Type of Wetting
θ = 0◦ Perfect

0◦ < θ < 90◦ High
90◦ ≤ θ < 180◦ Low

θ = 180◦ Non

Figure 3: A droplet resting on the trichomes of a leaf due to the balance of cohesive and adhesive
forces.

Theorem 2. When a liquid makes contact with a solid surface, it will approach a contact angle
that depends on the solid and liquid interfaces as

γLV cos θ = γSV − γSL.

This is known as Young’s Law named after Thomas Young [5][6] who made the law in 1805.

Proof. Consider the intersection between the solid, liquid, and vapour interfaces which is known as
the triple point. We can create a freebody diagram as shown below. The surface tension between
solid and vapour will act outwards from the fluid along their interface line. Similarly, the tension
between the liquid and solid will act along their interface line and the tension between liquid and
vapour as well.

[INCLUDE IMAGE]

Thus equating the force per unit length along the horizontal axis, we have

γSV = γSL + γLV cos θ

which gives us our equation.
Remark. In the above diagram, there seems to be an unbalanced component γV L sin θ. Oftentimes,
the substrate will have a resisting force that is equal to the vertical force. If the substrate is
deformable, it will have a little ridge near the triple point. For the case of olympiad problems, we
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Figure 4: A step-by-step process of how capillary origami happens. These pictures are taken on
the scale of ∼ 500µm.

neglect these factors. However, this principle can lead to beautiful structures through a process
called capillary origami [2] where scientists cut out a solid medium, put a water droplet on it, and
then make it bend into interesting shapes.

Proof. It is also important to derive this relation with energy, or more specifically, virtual work.
This proof is more important to give a full understanding of the importance of Young’s equation
because we know that surface tension is based on energy, and virtual work can help us solve other
problems. So, consider a droplet on the surface as shown below. Let the contact angle change by
a small angle δθ, and the contact point move a distance δx. This changes the liquid solid area by
δALV which is equal to the change in liquid solid area by

δALS = δALV cos θ.

The total change in energy then follows

δU = γLV δALV + (γSL − γSV )δALS
= (γLV cos θ + (γLS − γSV ))δASL.

We must have δU/δALS = 0 for the work to be virtual. Hence,

γLV cos θ = γSV − γSL.

Example 2 (Trichomes) The contact angle of liquids is increased in some natural materials
due to small hairs called trichomes which reduce the apparent contact area as in figure 3. If
the contact angle and area without trichomes is θ and A, then what is the contact angle with
trichomes assuming the new contact area is rA where r is a small numerical factor.

Solution. Let the contact angle change by a small angle δθ and the contact point move a distance δx.
this changes the liquid solid area by rδALS . Furthermore, note that for a fluid to be incompressible,

Page 7



Surface Tension PhysOly Ashmit Dutta

we need δV = 0 which means that the lost area in the liquid solid area must add up to the liquid
vapor area as 1. So,

rδALS = (cos θ + (1− r))δALV .

The total change in energy then follows

δU = γLV δALV + (γSL − γSV )δALS
= (γLV (cos θ + (1− r)) + r(γLS − γSV ))δASL

We must have δU/δALS = 0 for the work to be virtual. Hence,

r(γSV − γLS) = γLV (cos θ + (1− r)).

By Young’s law, it is easy to replace and find that

cos θ = r cos θ0 + r − 1.

�

Often, we can approximate the droplet as that of a spherical cap as shown in the image below.

Figure 5: A spherical cap which consists of a sphere that is cut through. It has an inner height h
and radius r.

It is well known that the volume of a spherical cap is given as V = 1
6πh(3r2 + h2) and the surface

area is S = π(h2 + r2). The total energy of the droplet will be given as

E = πr2(γLS − γSV ) + SγLV .

We know that under infinitesimal changes, dE/dr = 0. Hence,

dE
dr = 0 =⇒ 2πr(γLS − γSV ) + dS

dr γLV .

As S depends on h which depends on r, we cannot immediately differentiate. To combat this,
dV = 0 which implies that

dV = 0 =⇒ 1
6π(dh(3r2 + h2) + h(6rdr + 2hdh)) = 0.

This immediately yields the relationship of h upon r as

dh
dr = − 2rh

r2 + h2 .
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Furthermore, note that dS = 2π(hdh+ dr), so

dS = 2π
(
− 2rh2

r2 + h2 + 1
)

dr =⇒ dS
dr = 2πr

(
r2 − h2

r2 + h2

)
.

Putting this into our equation of energy minimization yields

r = h

√
γSV + γLV − γLS
γLV + γLS + γSV

.

The actual profile curve of droplets are more complex (taking hyperbolic forms), but the spherical
approximation here is useful because many olympiad problems will use spherical or elliptical models.
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1.3 Dimensional Analysis and Buckingham π

Oftentimes, surface phenomenon makes it hard to solve problems optimistically. Therefore, a lot
of olympiad problems rely on the solver to use dimensional analysis to get reasonable estimates.
Dimensional analysis is also a good way to make sure that your answer makes sense.

In short, dimensional analysis is the art of figuring out how some quantity is affected by other
parameters in a physical setup. For example, if a raindrop is falling to the ground, there are several
different parameters that can determine things such as its terminal velocity: drag coefficient, radius,
mass, surface tension, density of surrounding air, etc. In most problems, we have some certain
parameters that we are given, neglecting other effects to determine that quantity which is being
affected. Consider mathematically, the case of the terminal velocity of the raindrop. Let the
terminal velocity be represented by some variable, say A. The other quantities will be combined
in some order of operations to have the same dimensions of A, let us call this B. Then, on either
side of the equation, we need

A = B =⇒ [A] = [B]
where a bracket [] represents the dimensions of that quantity. Dimensions can typically be brought
down to three fundamental SI units: mass [M ], length [L], and time [T ]. Force, for example, can
be written as

[F ] = [M ][a] = [MLT ]−2.

Consider an example.

Example 3 (2020 F = ma Exam A) Liquid droplets store a given amount of potential
energy per surface area due to their surface tension. When two identical, nearly spherical
droplets coalesce onto a certain surface, part of this energy can be converted to kinetic energy,
causing the coalesced droplet to jump. Assuming the conversion is 100% efficient, how does
the maximum height h depend on the radius r of the initial droplets.

Solution. The surface area of the coalesced droplet is S ∝ r2. So the total potential energy is
Ep ∼ γr2. As density is constant, the mass of the droplet is m ∝ r3. So, dimensional analysis
mandates that both sides of the equation must have the same units, or

Ep ∼ Ek =⇒ γr2 ∝ r3h =⇒ h ∝ r−1.

�

If we have a quantity [Z], it can be written as a combination of multiple exponents from various
quantities:

[Z] = [A]k1 [B]k2 . . . [Y ]k3 .

Each quantity [A] will have M,L, and T with some exponents as

[MαLβT γ ] = [Mm1L`1T t1 ]k1 [Mm2L`2T t2 ]k2 . . . [MmnL`nT tn ]kn .

So, we can have three systems of equations

α =
∑
i

miki (2)

β =
∑
i

`iki (3)

γ =
∑
i

tiki (4)
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This however, raises the concern of what happens if there are more than three variables in our
equation. Three systems of equations can solve for three variables, but with four variables, we
would need one more equation. This concern is brought up in the Buckingham-π theorem.
Theorem 3. If there are N quantities with D independent dimensions, then one can form N −D
independent dimensionless quantities, but we cannot tell how the answer depends on them.
In most cases, this will not be needed. But, consider an example (also problem XX).

Example 4 (Falling Droplet) Consider a water droplet as shown below. When it falls on
a water hydrophobic surface, a smaller ring of smaller droplets assemble around the water
droplet after the collision. Explain why this happens and under what conditions/parameters
could we find and measure the dimensions of such a ring?

We could have four different dimensions: the height it is dropped from h, the droplets radius
r, its density ρ, and surface tension σ. Buckinghams theorem says that we have 4 quantities, but
they have 3 independent dimensions. So there will be 1 dimensionless quantity. Here it is obvious
that it has to be the two length parameters. So we will have a dimensionless function f(r/h). Now
we can do dimensional analysis.

[σ] = MT−2

[ρ] = ML−3

[h] = L

We must then say the dimensions for the radius R to be

R = f(r/h)hασβργ =⇒ L1 = [MT−2]α[ML−3]β[L]γ .

Therefore, we have three systems of equations

α+ β = 0
−2α = 0

−3β + γ = 0

Suprisingly, this implies that α, β = 0 and γ = 1. So, the new radius is simply R = f(r/h)h. This
is actually wrong as the radius does depend on surface tension and density, as an exercise, see why
so and what variables we neglected. The radius is not necessarily proportional to only h, though.
It could also be that R = f(r/h)r139h−137. We can only guess the dimensions which is one of the
flaws of dimensional analysis when we have too many dimensions.
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1.4 Young-Laplace Law

Suppose we have a soap bubble which is a hollow sphere with a thin membrane. This membrane
holds a surface tension γ. If we expand its radius by a small amount δr, the energy change δE can
be attributed to the change of internal pressure pδV and the change in surface energy γδA. In such
a bubble, the total surface area is 8πR because the soap bubble is double-layered due to there
being surface tension in the outer and inner layers; hence, twice as much soapy water is created
when stretching it by δr. The infinitesimal change in surface tension is hence

δEs = δ(γ8πR2) = 16πγRδR,

while the infinitesimal change in energy due to pressure is

δEp = δpδV = δpδ

(4
3πR

3
)

= δp(4πR2)δR.

Energy is at minimum so it does not change in infinitesimal movement. Hence, δE/δR = 0, meaning

δE

δR
= 0 = 16πγR+ δp(4πR2) =⇒ δp = 4γ

R
.

If we had a soapy ball, we could do the same proof but with the total surface area as 4πR2 to retrieve
δp = 2γ/R. These hold for spherical surfaces, but we can generalize this result in the following
theorem. For a cylindrical surface, we can also replicate the same problem to get δp = γ/R (refer
to the appendix for an alternate derivation). We can put all the results into one table.

Shape Pressure Difference
∆pbubble 4γ/R
∆pball 2γ/R

∆pcylinder γ/R

Theorem 4. For a surface with two principle radii of curvature R1 and R2, the change in pressure
∆P can be attributed as

∆P = γ

( 1
R1

+ 1
R2

)
.

The proof is easily accessible online, refer to [3] for instance.

Example 5 (Water between two plates) In a zero gravity region, a drop of liquid assumes
a cylindrical shape of diameter D between two plates separated a distance d. If the curved
surface of water is at right angles to the plate as shown in the figure, find the force exerted
by the drop on the plates.

Solution. Young-Laplace’s law says that the two radii of curvature of the droplet are R1 = D/2
and R2 →∞. Hence,

∆p = γ

( 1
R1

+ 1
R2

)
= 2γ
D
.

The force acting on the plate is then

F = ∆pπ
(
D

2

)2
= 2γ
D
π
D2

4 = πγD

2 .

�
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Consider a pool of water. This pool will have some height h due to the interactions of surface
tension. If this pool has a density ρ, the pressure from due to height difference from the ground
to its maximum height will be ∆p = ρg∆z. This pressure has to be counteracted by the pressure
from surface tension, which is conveniently given by the Young Laplace law ∆p = γ(r−1

1 + r−1
2 ).

One of the radii of curvature will be r1 =∞ at its maximum height as the pool can be thought to
be long, and at a point z, its radius of curvature will be 1/r2 = dθ/ds, where θ is the inclination
of the surface to the horizontal at that point and s is the distance measured along the arc from the
ground. Furthermore, since dz/ds = sin θ, we can write that

dθ
dz = dθ

ds
ds
dz = 1

r2 sin θ .

Therefore,
ρgz = γ(r−1

1 + r−1
2 ) = γ sin θdθ

dz .

This can be integrated to give

ρgz2

2γ = 1− cos θ =⇒ h =
√

2γ
ρg

(1− cos θ).

NB! This can also be derived with the principle of virtual work with the tools of wetting seen in
the previous subchapter.

This result is very useful and is one of the most well known problems related to surface tension,
because it provides a lesson of how ubiquitous the Young Laplace law is.
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2 Examples

Example 6 (2021 Online Physics Olympiad Open Round) Anyone who’s had an apple
may know that pieces of an apple stick together, when picking up one piece a second piece
may also come with the first piece. The same idea is tried on a golden apple. Consider two
uniform hemispheres with radius r = 4 cm made of gold of density ρg = 19300. The top half
is nailed to a support and the space between is filled with water.

Given that the surface tension of water is γ = 0.072 and that the contact angle between gold
and water is θ = 10◦, what is the maximum distance between the two hemispheres so that
the bottom half doesn’t fall? Answer in millimeters.

Solution. Let h be the difference in height. There are 3 forces on the bottom hemisphere. The force
from gravity, which has magnitude 2

3πρggr
3, the force from the surface tension, and the force from

the pressure difference at the top and bottom. The pressure difference is given by the young-laplace
equation,

∆P = γ

(
−1
r

+ 2 cos θ
h

)
≈ 2γ cos θ

h
. (5)

The radii are found by some simple geometry. It is likely that r will be much larger than the height,
so we can neglect the 1/r term. Now the force from surface tension is 2πrγ sin θ, since we take the
vertical component. So we can now set the net force to 0,

2
3πρggr

3 = πr2∆P + 2πrγ sin θ =⇒ 2
3ρggr

2 = (2rγ cos θ) 1
h

+ 2γ sin θ. (6)

This is simple to solve,

h = 2rγ cos θ
2ρggr2/3− 2γ sin θ = 2.81× 10−5 m = 0.0281 mm. (7)

This is very small so our approximation from earlier is justified. �
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Example 7 (2018 Eötvös Competition) There exists an air bubble with a volume V =
1 cm3 at normal pressure in a closed, long, cylindrical container filled with water at room
temperature. The container is rotated slowly about its central axis of symmetry at a steady
state, carefully accelerating it in a state of weightlessness until it reaches an angular velocity
of = 300 s1 where it is kept rotating at the same constant speed. What shape does the air
bubble now take? Give the typical dimensions of the bubble. The surface tension of water is
γ = 0.07 N/m.

Solution. First, let us assume that the air bubble has a lower density than water. When rotating
in the water, there is a pressure gradient that pushes the bubble to the center of the centrifuge.
As the centrifugal force is radial, the bubble has to elongate in the axial direction because volume
must be conserved. As ω � 1, we can assume that the the bubble becomes a very long ellipsoid
which is similar to a cylinder with length L � 1 and radius r � 1. We can proceed through 2
different methods now.

Method 1 (Energy)

Method 2 (Force) By Young-Laplace law for a cylindrical surface, we have

∆p = γ

r
=⇒ p(r)− p(0) = γ

r
. (8)

The centrifugal force per unit volume varies as F (r) = ρω2r. This implies that the centrifugal
pressure is

p(r) =
∫

F(r) · dr = 1
2ρω

2r2 + c. (9)

where c is a constant. This tells us that our constant is

c = p(0)− γ

r
− 1

2ρω
2r2. (10)

�
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Example 8 (Glass Plate) A glass plate is inserted into a fluid surface as shown below such
that the fluid makes a contact angle θ with the plate. What is the change in height of the
fluid given density ρ and surface tension γ?

Solution. Consider a part of the liquid with a horizontal length L. In the horizontal direction, there
will be four forces applied on the fluid.These are the surface tension force that is directed at the
top and bottom, the reaction force from the wall N , and the force due to atmospheric pressure Fp.
From force balancing, we find that

γL+N − Fp − γL sin θ = 0.

Let us now also consider a point A on the fluid that is a height y from the bottom with pressure
P0. We find the pressure at point B is

PB = P0 − ρgy.

Integrating this expression (or simply taking the average) gives us∫ h

0
PB =

∫ h

0
(P0 − ρgy)dy =⇒ N =

(
P0 −

ρgh

2

)
Lh.

The force due to atmospheric pressure is Fp = P0Lh. Substituting all these values into our equation
gives us

γL+
(
P0 −

ρgh

2

)
Lh− P0Lh− γL sin θ = 0.

Canceling factors and solving for h finally gives us

∆h =
√

2γ
ρg

(1− sin θ).

�
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Example 9 (Coalescing Bubbles) Two soap bubbles of diameters a and b coalesce together
to form a larger bubble of diameter c. If the surface tension of the solution is γ, find the
atmospheric pressure of the environment.

Solution. First, note that the pressure inside the bubble with radius r is larger than the outside
pressure because of the Laplace component 4γ/r, where 4 takes into account that the bubble has
two surfaces. If the number of moles of gas inside the bubbles are νa and νb respectively, then from
the ideal gas law (

P0 + 4γ
a/2

)
· 4

3π
(
a

2

)2
= νaRT

and (
P0 + 4γ

b/2

)
· 4

3π
(
b

2

)2
= νbRT.

For the total merged bubble. we have that(
P0 + 4γ

c/2

)
· 4

3π
(
c

2

)2
= (νa + νb)RT

where T is the air temperature. Putting all these equations together gives us(
P0 + 8γ

a

)
a3 +

(
P0 + 8γ

b

)
b3 =

(
P0 + 8γ

c

)
c3.

Factoring out both sides gives us

P0(a3 + b3 − c3) = 8γ(c2 − a2 − b2)

P0 = 8γ(c2 − a2 − b2)
a3 + b3 − c2

�
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Example 10 (2014 Seagull Competition) Due to instability (know as the Plateu-Rayleigh
instability, a tap water stream breaks into droplets at a certain height. This process can be
modelled by the instability of a long water cylinder in weightlessness. Let the diameter of the
cylinder be d = 1 mm; estimate the time period T during which the amplitude of the most
unstable perturbations will increase by a factor of e ≈ 2.718. The surface-tension of water
γ = 72 g/s2, and the density ρ = 1 g/cm3.

Solution. Since the potential energy in a sphere is lower, let us assume that the potential energy
stored in the surface is going to completely transferred to kinetic energy instantaneously. Let us
determine the radius of this sphere. Since the volume is equal, we have:

π(d/2)2h = 4
3πr

3 =⇒ r = 1
2

(
3d2h

2

)1/3

Therefore, the change in energy is:

γ∆S = γπdh− γ4π

1
2

(
3d2h

2

)1/3
2

= γπh
3√
h

(
3√
h− 3

√
9d/4

)

Let us assume this change in energy causes half of the liquid to move at a speed of v. Then:

1
2(0.5m)v2 = γπh

3√
h

(
3√
h− 3

√
9d/4

)
=⇒ v = 4

√
γ

ρd

√
3√h− 3

√
9d/4

3√h

using the fact that m = ρπ(d/2)2h. If we take v to be the average velocity, then the characteristic
time would be given by:

t = h

v
= 1

4

√
ρd

γ

√√√√ 3√
h7

3√h− 3
√

9d/4

We see that the characteristic time depends on the height h of the original cylinder. Since we want
the time for the most unstable perturbations, we want to maximize t and we can do this by taking
the derivative. Doing so gives us:

h =
(7

6

)3 9
4d ≈ 3.57d

Therefore, the characteristic time is:

t = 1
4

√
ρd

γ

√√√√ 3
√

(3.57d)7

3√3.57d− 3
√

9d/4
≈ 0.0088 s

Solution 2. Dimensional analysis tells us that the characteristic time is:

t =
√
ρd3

γ
= 0.003727 s

�
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3 Olympiad Problems

Problem 1. 2011 IPhO Problem 2: An Electrified Soap Bubble

Problem 2. 2014 IPhO Problem 1 B: Three Problems

Problem 3. 2012 IPhO Problem 2: Kelvin Water Dropper

Problem 4. 2011 APhO Problem 3: Birthday Balloon

Problem 5. 2010 APhO Problem 3: Electrons and Gas Bubbles in Liquids

Problem 6. 2008 APhO Problem 2: Tea Ceremony and Physics of Bubbles

Problem 7. 2016 IZhO: Equilibrium in Terms of Energy

Problem 8. 2020 USAPhO B1: String Cheese

Problem 9. 2008 USAPhO: Optical Society of America Bonus

Problem 10. 2021 RMPh Problem 3: Water World

Problem 11. 2019 GPhO T1 B: Glass of Water in Weightlessness

Problem 12. 2011 Open EPhO (P182): Surface Tension

Problem 13. 2009 NBPhO Problem 7: Soap Film
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4 Practice Problems

Problem 1. A thin soapy film is stretched in a square frame that has a length a. A small thin
hair with negligible mass is fastened at two diagonal points in the frame. One part of the thread
is pierced with a small needle so that the thread is strained with a tension force T . What is the
length ` of the thread if it is known that ` >

√
2a?

Problem 2. A soap film is created in a loop formed by a rectangular wire, and an inextensi-
ble light thread of length ` pulls the thread into a semicircle. Calculate the force F applied at the
midpoint of thread AB such that the two parts of the thread turn into smaller semicircles as in the
figure below.

Problem 3. A small coin has a thickness t, radius r, and density ρc. It is placed in a fluid
of density ρf . What is the surface tension γ of the coin if its top surface is the same as the height
of the liquid far away from the coin?

Problem 4. (2015 Online Physics Brawl) Verča likes to wash the dishes. When she’s done,
she takes a little boat and places it on the surface of water mixed with detergent. The boat is a
small wooden board with thickness b, length ` and width w. Its length is parallel to the axis x.
The surface tension in the x-direction is given by (x) = σ0 +xs and in the y-direction by σ(y) = σ0,
where σ0 = const and s is the gradient of surface tension. Determine the initial acceleration of
boat after being placed on the water surface. The density of wood is ρ. If the acceleration is in the
direction of increasing surface tension, it’s positive; if it’s in the opposite direction, it’s negative.
The contact angle of wood and water is β . The inclination of the boat is negligible

Problem 5. (2014 Online Physics Brawl) As it known, propagation of surface waves on a lake is
not significantly influenced by gravity in the short-wavelength limit. Nevertheless there is a strong
effect of surface tension which needs to be considered. Using dimensional analysis, determine the
angular frequency of surface waves as a function of surface tension σ, water density ρ and the wave
number k = 2π/λ, where λ is the wavelength. Assume that the dimensionless coefficient is equal
to one in this case. Also, derive an expression for the group velocity.

Problem 6. (2018 Online Physics Brawl) Vı́tek was investigating some fluid properties using
a water surface with surface tension σ1. For this purpose, he made a thin cork board with mass m
and side lengths b and c, which was – to his surprise – floating on the surface. He decided to get
the board moving, so he added a bit of detergent to one of its shorter sides. The surface tension
of the resulting soap (detergent) solution is σ2. Help Vı́tek find the acceleration of the cork board.
For simplicity, assume that water resistance is negligible and that the contact angles are always 90◦.

Problem 7. (Thompson) The latent heat of vaporization of water is H = 2.25 × 109 Jm−3.
The surface tension of water is γ = 72 mNm−1. From these two facts, together with a simple
theory, estimate the mean distance between neighbouring water molecules. (Hint: introduce the
bond energy E between two molecules which you can assume to be constant.)

Problem 8. A mercury drop of density ρH and surface tension γH and a water droplet coated in
Talcum powder are similar in shape and size. For a particular shape of a drop, the ratio of surface
energy and gravitational potential energy bear a definite ratio regardless of any other parameter of
the drop. What is the ratio of masses of the mercury drop to the water drop?

Page 20



Surface Tension PhysOly Ashmit Dutta

Problem 9. (RuPhO) Consider a square plate of sidelength a and thickness h on the water
surface. The plate has a density ρ, water has a density ρw and a surface tension γ. What is the
weight that the plate can support?

Problem 10. (2016 Rudolf Ortvay Competition) A droplet of mercury with radius R floats in zero
gravity. If the droplet is placed into a weak homogeneous electric field E0, it will slightly elongate
in the direction of the field lines. Determine the equilibrium shape of the droplet! The surface
tension of mercury is γ, and let us assume that ε0E

2R� γ.

Problem 11. (2016 Seagull Competition) At the International Space Station, a drop of water
with a radius of R = 4 cm floats in weightlessness. The drop is given a small angular accelera-
tion, which is why it is spinning faster and faster. At what critical angular velocity ω does the
droplet decompose into two pieces? The surface tension of water is γ = 0.073 N/m, water density
ρ = 1000 kg/m3.

Problem 12. (2016 Online Physics Brawl) Into how many smaller droplets could a larger wa-
ter droplet break, if it fell from a h height? Consider all droplets to be spherical. The radius of
the original droplet is r (with its center of mass at height h) and the droplets it breaks into should
have equal sizes. The surface tension of water is σ and its density is ρ. We’re only looking for
an estimate of an upper bound of the number of droplets based on the energetic balance at the
beginning and at the end.

Problem 13. Consider a water droplet as shown below. When it falls on a water hydropho-
bic surface, a smaller ring of smaller droplets assemble around the water droplet after the collision.
Explain why this happens and under what conditions/parameters could we find and measure the
dimensions of such a ring?

Problem 14. (Vietnam TST) A thin rectangular metal plate, one side of length a and the other
which is very long relative to a is placed on the surface of a liquid that is completely wetted with
respect to the metal. The glass plate is slowly raised to the highest position so that the liquid is
still attached to the plate. Let ϕ be the angle formed by the tangent at any point M on the liquid
boundary with the horizontal (Figure 2.1). Given that the barometric pressure is P0, the density
of the liquid is ρ, the surface tension of the liquid is σ, and the acceleration due to gravity is g

1. Find the x, y coordinates of M in the given O(x, y) coordinate system as shown in the figure
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below.

2. Given a > 1.1
√

σ
ρg , Determine:

(a) The maximum height h of the metal plate above the horizontal liquid surface
(b) The minimum width b of the column of liquid adhering to the metal plate
(c) The vertical force per unit length on the long side of the sheet given the unit length

(long side) weight of the metal is P .

3. Redo the problem in the case a <
√

σ
ρg .

• The radius of curvature R at a point on the curve can be determined by the formula
R =

∣∣∣ ds
dϕ

∣∣∣.
•
∫ dα

cosα = ln
∣∣tan

(
π
4 + α

2
)∣∣+ C.

Problem 15. (Indonesia TST) A thin spherical liquid bubble forms in a small hole in the wall
of a box containing a monatomic ideal gas (CV = 3

2nR). The size of the hole is so small that it
is negligible. There is a piston that can be moved to change the volume of the room. The total
gas in the chamber and bubbles is n moles. It is known that the initial total volume of the gas is
V0 = 150πr3

0 (total box and bubbles) and the pressure P0 is equal to atmospheric pressure. The
cross-sectional area of the box is S = 16πr2

0 where r0 is the initial radius of the bubble. The surface
tension of the bubble satisfies

σ = σ0

(
r

r0
− 1

)
.

with σ0 = r0P0/30. Notice that the bubble has two surfaces, namely an inner surface and an
outer surface. The heat capacity of the bubble at a fixed radius is Cr =

(
∂Q
∂T

)
r

= nR
2 . The initial

temperature of the bubble is equal to the temperature of the gas. Assume that no heat can enter
and leave the system.

1. At first the piston is compressed slowly enough to be considered quasi-static, but fast enough
so that no heat from the gas moves to the bubble or vice versa. Determine how far the piston
moves x if the bubble radius becomes 2r0. Also determine the gas temperature T1 at that
time.

2. If the internal energy of the bubble is Ub, determine the change in the bubble’s internal energy
with respect to the radius at constant temperature

(
∂Ub
∂r

)
T

3. Now consider the case where the piston is held in place. After a long time , there is a transfer
of heat between the gas and the bubbles so that the temperature is the same. Determine the
final bubble radius and bubble temperature.

5 Appendix

5.1 Relationship of Surface Tension and Temperature

We can relate surface tension to the several state variables[1]. The first law of thermodynamics for
a bubble surface yields

dU = γdA+ TdS. (11)
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Furthermore, the differential form of Hemoltz’s function shows

dF = γdA− SdT. (12)

Therefore, we have a Maxwell relationship of(
∂S

∂A

)
T

= −
(
∂γ

∂T

)
A
. (13)
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